
CSEP504:

Advanced topics in software systems

• Tonight

– India trip report

– Apologies and status

– Evaluation approaches for software engineering

research

– Software engineering economics

David Notkin  Winter 2010  CSEP504 Lecture 7

UW CSE P504 1

India trip report

• Microsoft Research India

• 3rd India Software Engineering Conference

 SEA  CDG  BLR

Microsoft Research India guest house

 Car and driver Bangalore  Mysore

 Infosys campus

 Car and driver Mysore  Mysore Palace  BLR

 BLR  CDG

Radisson Blu

 CDG  SLC  SEA

UW CSE P504 2

Microsoft Research India

• Recently celebrated its
first 5 years

• Close connections with
Indian Institute of Science

• Strong External Research
Program

• Ties with Microsoft India
Development Center
(Hyderabad) and soon
with Yahoo

• 50-70 technical staff
– Double that in summer

(interns)

• Algorithms Research Group

• Cryptography, Security, and
Applied Mathematics

• Mobility, Networks, and
Systems

• Multilingual Systems

• Rigorous Software
Engineering

• Technology for Emerging
Markets

• Vision, Graphics, and
Visualization

• Advanced Development and
Prototyping

UW CSE P504 3

Rigorous software engineering

• Akash Lal

• Aditya Nori

• Sriram Rajamani

• Kaushik Rajan

• Ganesan Ramalingam

• Venkatesh-Prasad Ranganath

• Kapil Vaswani

UW CSE P504 4

Recent publications (selected)

• Kaushik Rajan, Sriram Rajamani, and Shashank Yaduvanshi,

GUESSTIMATE: A Programming Model for Collaborative

Distributed Systems. PLDI 2010

• Prakash Prabhu, G Ramalingam, and Kapil Vaswani, Safe

Programmable Speculative Parallelism. PLDI 2010

• Aditya V. Nori and Sriram K. Rajamani, An Empirical Study of

Optimizations in Yogi, ICSE 2010

– Yogi: a scalable software property checker that

systematically combines static analysis with testing.

• Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J.

Simmons, Sai Deep Tetali, and Aditya V. Thakur, Proofs from

Tests. IEEE TSE 2010

UW CSE P504 5

Recent publications (con‘t)

• Dawei Qu, Abhik Roychoudhury, Zengkai Lang, and Kapil

Vaswani, Darwin: An Approach for Debugging Evolving

Programs. ESEC/FSE 2009

• B. Ashok, Joseph Joy, Hongkang Liang, Sriram Rajamani,

Gopal Srinivasa, and Vipindeep Vangala, DebugAdvisor: A

Recommender System for Debugging, ESEC/FSE 2009

• Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and

Anindya Banerjee, Merlin: Specification Inference for Explicit

Information Flow Problems. PLDI 2009

• Trishul Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and

Kapil Vaswani, Holmes: Effective Statistical Debugging via

Efficient Path Profiling. ICSE 2009

– Holmes: a statistical tool to find the most likely cause of test failures

by collecting and analyzing fine-grained path coverage data and

identified code paths that strongly correlate with failure

UW CSE P504 6

Other projects

• Mining API specifications – quantified temporal rules

• Debug Advisor – a search using fat multi-dimensional

queries (KBs of structured and unstructured data

describing the contextual information) to find similar

bugs and related information– people related to it,

relevant source and binary files, etc.

• Shadowed upgrades

• …much more!

UW CSE P504 7

3rd ISEC

• Conference developed primarily by Pankaj Jalote and

Sriram Rajmani – build a stronger software

engineering research community in India

– Hyderabad, Pune, Mysore, Kerala, …

• Three legs

– Reviewed research papers, posters, etc.

– Keynotes

– ESEC/FSE and ICSE best paper presentations

• Mysore 2010: at Infosys training and education

campus; about 200 attendees at ISEC

UW CSE P504 8

Infosys

• Infosys founded 1981, now over 100K employees

– Business and technology consulting, application

services, systems integration, product

engineering, custom software development,

maintenance, re-engineering, independent testing

and validation services, IT infrastructure services

and business process outsourcing

• In 2007, received ~1.3M applications and hired ~3%

• NYSE INFY ADR: market cap of ~US$34B; 2009

revenue about US$4.7B, 11.7% growth

UW CSE P504 9

Infosys Mysore campus

UW CSE P504 10

Comments

• ―Too many kinds of cookies in the same box.‖

• ―Like Disneyland without the rides.‖

UW CSE P504 11

SE Research Center roundtable

• Should India have a software engineering research

center something like the CMU Software Engineering

Institute, Fraunhofer Institute, etc.?

• Most interesting point to me: why aren‘t more

students in India interested in software engineering

research?

UW CSE P504 12

Keynotes

• Me

• Kris Gopalakrishnan (CEO/MD Infosys)

• William Cook (UT Austin)

UW CSE P504 13

Best papers ESEC/FSE and ICSE

• Does Distributed Development Affect Software

Quality? An Empirical Case Study of Windows Vista

– Christian Bird, Nachiappan Nagappan,

Premkumar Devanbu, Harald Gall, Brendan

Murphy

• Asserting and Checking Determinism for

Multithreaded Programs

– Jacob Burnim, Koushik Sen

• DARWIN: An Approach for Debugging Evolving

Programs

– Dawei Qi, Abhik Roychoudhury, Zhenkai Liang,

Kapil Vaswani
UW CSE P504 14

My perspective

• India‘s software engineering and software

engineering research communities are vibrant

– I heard some fascinating stories of start-ups

leveraging the ―cloud‖

• There are educational and funding issues to address

– real, but not insurmountable

UW CSE P504 15

Recap and status

• Lectures: tonight is the last one

• Grading: Sai has been on top of the structured

reports; I have not been on top of the state-of-the-

research papers – this week‘s job

• Deadlines remain the same: I have some give on the

March 14th deadlines, if needed, for the state-of-the-

research paper.

• Unassigned 10% of class grade

• Choppiest class I‘ve ever taught due to travel,

holidays, etc. Never again.

UW CSE P504 16

Evaluation of SE research

• You are in the field in industry

• You‘ve read a number of SE research papers

• What convinces you?

– Not necessarily to adopt a tool, but to consider an

approach worthwhile enough to pursue in more

detail

• Why?

UW CSE P504 17

Possible answers include

• Intuition

• Quantitative assessments

• Qualitative assessments

• Case studies

• … other possible answers?

UW CSE P504 18

Which papers/ideas…

• …have you found most compelling?

• Why those?

UW CSE P504 19

Brooks on evaluation

• The first user gives you infinite utility – that is, you

learn more from the first person who tries an

approach than from every person thereafter

• In HCI, Brooks compared

– "narrow truths proved convincingly by statistically

sound experiments, and

– broad 'truths', generally applicable, but supported

only by possibly unrepresentative observations.‖
– Grasping Reality Through Illusion -- Interactive Graphics Serving

Science. Proc 1988 ACM SIGCHI

UW CSE P504 20

More on Brooks by Mary Shaw

• ―Brooks proposes to relieve the tension through a certainty-shell

structure – to recognize three nested classes of results,

– Findings: well-established scientific truths, judged by

truthfulness and rigor;

– Observations: reports on actual phenomena, judged by

interestingness;

– Rules of thumb: generalizations, signed by their author but

perhaps incompletely supported by data, judged by

usefulness.‖

• What Makes Good Research in Software Engineering?

International Journal of Software Tools for Technology Transfer,

2002

UW CSE P504 21

Shaw: research questions in SE

UW CSE P504 22

Shaw: types of SE results

UW CSE P504 23

Shaw

• Types

of

validation

UW CSE P504 24

Tichy et al. on quantitative evaluation

• Experimental evaluation in computer science: A quantitative

study. Journal of Systems and Software 1995

– Tichy, Lukowicz, Prechelt & Heinz

• Abstract:

A survey of 400 recent research articles suggests that computer

scientists publish relatively few papers with experimentally

validated results. The survey includes complete volumes of

several refereed computer science journals, a conference, and

50 titles drawn at random from all articles published by ACM in

1993. The journals of Optical Engineering (OE) and Neural

Computation (NC) were used for comparison. .. (con‘t)

UW CSE P504 25

Con‘t

Of the papers in the random sample that would require

experimental validation, 40% have none at all. In journals related to

software engineering, this fraction is 50%. In comparison, the

fraction of papers lacking quantitative evaluation in OE and NC is

only 15% and 12%, respectively. Conversely, the fraction of papers

that devote one fifth or more of their space to experimental

validation is almost 70% for OE and NC, while it is a mere 30% for

the computer science (CS) random sample and 20% for software

engineering. The low ratio of validated results appears to be a

serious weakness in computer science research. This weakness

should be rectified for the long-term health of the field. The

fundamental principle of science, the definition almost, is this: the

sole test of the validity of any idea is experiment. —Richard P.

Feynman. Beware of bugs in the above code; I have only proved it

correct, not tried it. —Donald E. Knuth

UW CSE P504 26

Technology transfer: briefly

• Not a consumer problem

• Not a producer problem

• An ecosystem issue

UW CSE P504 27

28

Evolving the High

Performance Computing and

Communications Initiative to

Support the Nation's

Information Infrastructure

(1995)

“Brooks-Sutherland” report

Computer Science and

Telecommunications Board

(CSTB)

Comments?

UW CSE P504 29

Software engineering economics

• The phrase dates to around 1981, when Barry

Boehm published his tome with the same title

• His 1976 IEEE Transactions on Computers article

―Software Engineering‖ identified engineering

economics as one ―scientific principle‖ in which

software engineering fell short of hardware

engineering

• To the first order, the focus of his book was on how to

better estimate effort, cost and schedule for large

software projects – COCOMO (COnstructive COst

MOdel)

UW CSE P504 30

COCOMO basics

• Algorithmic software cost estimation modeled with a regression

formula that has parameters derived from historical project data

and current project characteristics

• The basic COCOMO equations take the form

– Effort Applied = a(KLOC)b (person-months)

– Development Time = c(Effort Applied)d (months)

– People required = Effort Applied / Development Time (count)

UW CSE P504 31

a b c d

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Regression parameters

Basic COCOMO

• Based on waterfall-based 63 projects at TRW

Aerospace

• Projects from 2KLOC to 100KLOC, languages from

assembler to PL/I

• The Basic Model designed for rough order-of-

magnitude estimates, focused on small to medium-

sized projects

– Three sets of parameters: organic, semideteched

and embedded

UW CSE P504 32

Intermediate COCOMO

• Uses more parameters (cost drivers) that account for

additional differences estimates

• Product attributes: required software reliability,

complexity of the product, …

• Hardware attributes: run-time performance

constraints, memory constraints, …

• Personnel attributes: software engineering capability,

applications experience, programming language

experience, …

• Project attributes: use of software tools, application of

software engineering methods, …

UW CSE P504 33

Intermediate COCOMO

• The 15 sub-attributes are each rated from ―very low‖ to

―extrahigh‖ with six discrete choices

• Effort multipliers are empirically derived and the EAF is the

product of the multipliers

UW CSE P504 34http://neohumanism.org/i/in/intermediate_cocomo_1.html

Intermediate COCOMO

• E=a(KLOC)b  EAF

– And similarly for development time and people

counts

• There is a separate table for parameters a and b

across organic, semi-detached, embedded for

Intermediate COCOMO

UW CSE P504 35

Detailed COCOMO & COCOMO II

• Detailed COCOMO also accounts for the influence of

individual project phases

• COCOMO II was developed and released in 1997,

aimed at (then) modern software projects

– Newly tuned parameters

– Accounted for move from mainframes to desktops,

from batch to interface computation, to code

reuse, etc.

UW CSE P504 36

1981 Boehm book also discusses

• Multiple-goal decision analysis

– Most optimization theory assumes that there is a

single objective function to maximize

– Models like this one account for multiple goals that

must be balanced in a definable manner

• Risk analysis

– Foundation for his later work in the spiral model

• And more…

UW CSE P504 37

Boehm Sullivan ―Software Economics‖ roadmap

(ICSE 2000)

• ―The core competency of software engineers is in making

technical software product and process design decisions.

Today, however, there is a ‗disconnect‘ between the decision

criteria that tend to guide software engineers and the value

creation criteria of organizations in which software is developed.

It is not that technical criteria, such as information hiding

architecture, documentation standards, software reuse, and the

need for mathematical precision, are wrong. On average, they

are enormously better than no sound criteria.

UW CSE P504 38

Con‘t

• ―However, software engineers are usually not involved in or

often do not understand enterprise-level value creation

objectives. The connections between technical parameters and

value creation are understood vaguely, if at all. There is rarely

any real measurement or analysis of how software engineering

investments contribute to value creation. And senior

management often does not understand success criteria for

software development or how investments at the technical level

can contribute fundamentally to value creation. As a result,

technical criteria tend to be applied in ways that in general are

not connected to, and are thus usually not optimal for, value

creation.‖

UW CSE P504 39

Thinking about value

• Decision theory (or utility theory) defines a framework

for decisions under uncertainty, depending on the risk

characteristics of decision makers

• This is closely related to (again) multi-objective

decision-making

• Classical corporate finance uses net present value

(NPV) as an investment decision criterion and

computes it by discounted cash flow analysis (DCF) –

can‘t make a business case without these

UW CSE P504 40

NPV example from Wikipedia

• A corporation must decide whether to introduce a

new product line. The new product will have startup

costs, operational costs, and incoming cash flows

over six years. This project will have an immediate

(t=0) cash outflow of $100,000 (which might include

machinery, and employee training costs). Other cash

outflows for years 1-6 are expected to be $5,000 per

year. Cash inflows are expected to be $30,000 each

for years 1-6. All cash flows are after-tax, and there

are no cash flows expected after year 6. The required

rate of return is 10%.

UW CSE P504 41

Con‘t

• The table shows the

present value (PV) for

each year

• The NPV is the sum of the

PVs

• In this case, it‘s $8,881.52

• A positive NPV means it

would be better to invest in

the project than to do

nothing – but there might

be other opportunities with

higher NPV

UW CSE P504 42

Real options

• DCF/NPV treats assets as passively held – not

actively managed

• But projects are (or can be ) actively managed

– Management usually has the flexibility to make

changes to real investments in light of new

information. (e.g., to abandon a project, enter a

new market, etc.)

• The key idea of real options is to treat such flexibility

as an option, and to (in some cases) price them using

techniques related to those for financial options

UW CSE P504 43

Baldwin and Clark (2000)

• Baldwin and Clark view Parnas' information

hiding modules as creating options

• They value these and develop a theory of

how modularity in design influenced the

evolution of the industry structure for

computers over the last forty years

• Non-modular systems must be kept or

replaced as a whole whole

• A system of independent modules can be

kept or replaced (largely) individually based

on judgments of improvement (or not)

• Modularity provides a portfolio of options vs.

an option on a portfolio

UW CSE P504 44

DSMs: design structure matrices

• The parameters are A, B, and C

• The X in row B, column A means

that good choice for B depends on

the choice made for A.

• Parameters requiring mutual

consistency are interdependent,

resulting in symmetric marks:

(B,C) and (C,B).

• When one parameter choice must

precede another the parameters

are said to be hierarchically

dependent: (B,A).

• Independent parameters can be

changed without coordination.

UW CSE P504 45

Material from

Sullivan, Griswold, Cai, Hallen. The

structure and value of modularity in

software design. ESEC/FSE 2001

Splitting

• DSMs may not show largely independent designs

• In these cases, one approach is to apply splitting

• Break a dependence with a new parameter that constrains the

values of the original parameters – this means, in part, that they

depend on it

• Fix the value of the new parameter so that the original

parameters to be changed independently as long as they are

only changed in ways consistent with the new constraint

• For example, introduce a new interface (I, in the below example)

UW CSE P504 46

Parnas KWIC

UW CSE P504 47

NOV (net option value)

• A module creates an opportunity

– to invest in k experiments to create candidate

replacements,

– each at a cost related to the complexity of the

module

– if any of the results are better than the existing

choice, to substitute in the best of them

– at a cost that related to the visibility of the module

to other modules in the system

UW CSE P504 48

KWIC NOV

UW CSE P504 49

• The option value of each module is the

value at the peak

• Sum the module NOV‘s

• 0.26 for the strawman design

• 1.56 for the information-hiding

Status

• The basic idea seems to make sense to many people

• One of the core problems is the notion of how to tune

the model parameters

– Financial markets set parameters based primarily

on scads of historic data

– COCOMO set parameters based on careful

studies of a reasonably large set of reasonably

similar software projects

– Tuning parameters for modularity seems more

complicated

UW CSE P504 50

UW CSE P504 51

Boehm-Sullivan roadmap

Boehm-

Sullivan

roadmap

Your turn

• In what ways does your organization link technical

decision making with business-level decision

making?

• And not?

UW CSE P504 52

McConnell‘s cone of uncertainty

ICSE 2009 keynote

UW CSE P504 53

Governance of Software Development

• Clay Williams, IBM Research

• Slides directly taken from an NSF workshop

presentation

UW CSE P504 54

Governance @ IBM Future Directions

UW CSE P504 55

UW CSE P504 56

UW CSE P504 57

UW CSE P504 58

UW CSE P504 59

My bottom line

• The long-term goal of software engineering economics is to help

everybody make more sensible decisions

– Technical decisions

– Business decisions

– Project management decisions

• Not one of these is primary with the others secondary – but that

is how we each seem to treat the others

• Better understanding the links among them is crucial; the

models may give us opportunities to better understand these

links

• I am always scared that quantification tends to lead to a focus

on the quantities, and there is often a disconnect between the

quantities we can measure and want we want to do

UW CSE P504 60

Questions?

• For tonight?

• For the quarter?

UW CSE P504 61

Course evaluations…

UW CSE P504 62

